Essential Guide to Open-Source Intelligence (OSINT)

Exploitation through publicly available information is the single largest threat to companies and their people today.

Known as Open-Source Intelligence, or OSINT, this public data reveals to hackers how they can compromise human targets via social engineering attacks and defeat the most powerful technical solutions.

The bad news for organizations is that the internet makes it easy for attackers to find information about them and their employees to craft convincing attacks.

The good news is that enterprise security teams can also use OSINT for defensive purposes in order to level the playing field and prevent attacks. With companies recognizing the important role this data plays, the global demand for OSINT tools is on the rise, with research predicting a market growth rate of 28.33% between 2022 and 2030. Fortunately, companies can now automatically harness OSINT like never before to protect their people and their assets.

We’ve created this e-book to explain OSINT, how it’s used, and how security professionals can use Picnic’s powerful new technology to take the advantage away from threat actors.

What you’ll learn:

  • What OSINT is
  • The history of OSINT
  • How people collect OSINT
  • The most-used OSINT tools
  • The information people can find with OSINT
  • How cybercriminals use OSINT for social engineering
  • How cybersecurity teams can use OSINT

What is Open-Source Intelligence (OSINT)?

Open-Source Intelligence (OSINT) is information available through public data sources that someone can collect and analyze.

People can engage in OSINT gathering legally using tools that find data on:

  • the “surface web,” including search engines, blogs, and job postings
  • social media
  • databases containing public records

Additionally, malicious actors often use specialized intelligence tools and search engines for finding information on the dark web.

What is the history of OSINT?

Gathering OSINT is not a new phenomenon. However, the information available and the search processes have changed, especially as more people share data on the internet.

During World War II, the Office of Strategic Services established the first Research and Analysis Branch dedicated to collecting OSINT and using it for the war effort. Since then, global military and intelligence services have used publicly available data for their operations.

In the late 1980s, the US military first used the term OSINT, noting its tactical battlefield value. During the 1990s, OSINT became even more important to the US intelligence community, with the 1992 Intelligence Reorganization Act incorporating public information as valuable and the 1994 establishment of the Community Open-Source Program Office (COSPO) within the CIA.

As the internet became more accessible, so did OSINT. From websites with public government data and social media networks, almost anyone can search publicly available data legally and ethically.

Outside the confines of legality and ethics, threat actors use sophisticated tactics to gather data. For criminals, the definition of “public” also includes the dark web where malicious actors share stolen, otherwise-nonpublic personal information like credit card numbers, passwords, and social security numbers.

How do people collect OSINT?

Since OSINT focuses on publicly available information, people can find it using paid and unpaid search methods. Further, their processes can be as simple as a Google search or as complex as creating a specialized tool.

Surface Web
The surface web is the internet that most people use. It’s easy for the general public to search using standard search engines.

Search Engines
When people want to find information, they usually start with generally available search engines. Most people are familiar with how these work. Google’s search engine has become synonymous with looking up facts and data.

  • Google
  • Bing
  • Yahoo!
  • DuckDuckGo
  • Startpage

Blogs
Blogs are regularly updated websites or web pages that people and organizations use to inform readers. An organization’s blog might try to educate readers about topics related to its products or services. A personal blog often shares stories about someone’s interests, like hobbies, books, music, television shows, or movies.

Job Postings
Most companies list job postings on their websites so that interested applicants can find them. Since companies use job postings to attract candidates, researchers can use them to:

  • Locate corporate offices
  • Find Human Resources contacts

Social Media
People and companies increasingly use social media. Many companies have social media marketing strategies that they use to make important announcements, like when they hire a new senior executive or acquire a new company. Similarly, people often share personal stories and information on social media sites.

For example, LinkedIn enables organizations to create digital business networks. However, since the company shares this information publicly, it becomes an OSINT source. As a career-focused social media site, people may be more “trusting” and open to connecting with others.

Some examples of OSINT gathering on LinkedIn include searching by company name for job roles like:

  • Chief executive officer
  • Chief financial officer
  • Account executive

Someone could do a search for account executives at an organization, look at their connections, and then find a senior leadership team member’s information.

Data Brokers/People Search Engines
Data brokers collect and sell personal or corporate data. While they often use public records to aggregate this information, they can also source it privately. As a paid service, they collect data from multiple locations that can include:

  • Census records
  • Electoral rolls
  • Social media
  • Court reports
  • Purchasing history

Some examples of data brokers and people search engines include:

  • PeopleFinderFree
  • Truthfinder
  • Spokeo
  • US Search
  • Whitepages

Custom Search Engines
More technical researchers can build custom search engines. With a custom search engine, a researcher can collect OSINT across multiple social media websites or filter searches by file type.

For example, the Google Programmable Search Engine is a platform enabling web developers to use Google search capabilities on their websites. However, researchers can use this functionality to search across specific websites and take multiple actions. When engaging in OSINT, researchers might create a custom search engine that enables a simultaneous search across various social networks that can isolate each network’s results in their own tab. This streamlines their process, giving them a way to use the collected data more effectively and efficiently.

Specialized Search Engines
Specialized search engines enable researchers to expand their data collection. These provide search options and capabilities that typical search engines lack.

Some examples of specialized search engines include:

  • Wayback Machine: cached website data providing historical information
  • Searx.me: ability to export results and enabling researcher anonymity
  • Exalead: unstructured data to find documents and audio files, including papers or webinars

Caller ID Databases
Caller ID databases enable people to do reverse lookups on phone numbers. While these traditionally only worked for landlines, more databases now provide services for cellular phones. When researchers input a known telephone number, they can retrieve data like:

  • Country
  • Name
  • Carrier name
  • Carrier type

Third-Party Data Breaches
Whether researching legally or illegally, people can find public databases containing information about compromised email addresses and the passwords associated with them.

For example, cybercriminals often post this information on websites like Pastebin. Further, in response to increased data breaches, ethical services now exist, including:

  • Have I Been Pwned
  • Spycloud
  • Scylla
  • Leaked Source
  • Ghost Project
  • PSBDMP

While researchers need an email address to use these services, they provide valuable information by:

  • Confirming that an email address is valid
  • Providing insight into the breach that compromised the email

Since cybercriminals are not held to legal and ethical research requirements, they often download databases of publicly available and stolen databases, then run the data through analytics tools. If they find a username and password for one service, like LinkedIn, they can try those credentials to gain access to a corporate environment.

Custom Tools
Gathering OSINT information from all these diverse locations manually isn’t efficient. Often, researchers create or leverage custom tools. With these tools, they can more rapidly search across all potential locations and search engines.

Dark Web
What people call the dark web is really internet traffic directed through the Tor network that conceals users’ location and network usage. This anonymity makes it more difficult to trace activity back to the user, including websites hosted on the network. Criminal activity thrives on the Tor network because the sites are not hosted on publicly viewable networks.

Download your free copy of Picnic’s OSINT eBook

What Are the Most-Used OSINT Tools?

While threat actors may build their own tools, many ethical researchers leverage pre-existing research tools. Below are some of the OSINT tools often used to uncover publicly available data about people and technologies.

Maltego
Focused on discovering relationships, this gathers data like:

  • Names
  • Email addresses
  • Aliases
  • Companies
  • Websites
  • Document owners
  • Affiliations

It uses several common public information sources, including:

  • DNS records
  • Whois records
  • Search engines
  • Social networks

Then, it provides charts and graphs that uncover the connections between the data points.

Mitaka
Mitaka enables people to research using their web browsers. With the ability to search across more than seventy search engines, it returns information like:

  • IP addresses
  • Domains
  • URLs
  • Hashes
  • ASNs
  • Bitcoin wallet addresses
  • Indicators of Compromise (IoCs)

Spiderfoot
A free tool, Spiderfoot is an application that red teams often use during their reconnaissance activities. Some information that it returns includes:

  • IP addresses
  • CIDR ranges
  • Domains and subdomains
  • ASNs
  • Email addresses
  • Phone numbers
  • Names and usernames
  • Bitcoin addresses

Spyse
Focused on detecting internet assets, Spyse collects and analyzes publicly available data about:

  • Websites
  • Website owners
  • Servers associated with websites
  • Internet of Things (IoT) devices

BuiltWith
BuiltWith provides information about a website’s technology stack and platform. For example, it generates information that includes:

  • Content management system (CMS), like WordPress, Joomla, or Drupal
  • Javascript/CSS libraries, like jQuery or Bootstrap
  • Plugin installed
  • Frameworks
  • Server information
  • Analytics and tracking information

Intelligence X
As an archival service and search engine, Intelligence X enables researchers to obtain historical versions of webpages and leaked data sets, including controversial content.

Some examples of the data that Intelligence X retains include:

  • Lists of compromised VPN passwords exposed on cybercriminal forums
  • Indexed data collected from political figures’ email servers
  • Information from social media site data leaks

Ahmia
Ahmia enables dark web research by making Tor results visible without requiring users to install the browser. However, to open links and results, researchers still need to install the Tor browser to open links and results.

DarkSearch.io
As of January 2022, this service is available only to organizations who request private access. The platform allows researchers to run automated searches of the dark web without requiring them to use .onion versions or install the Tor browser.

Grep.app
Grep.app focuses on git repositories, providing a single search across:

  • GitHub
  • GitLab
  • BitBucket

People use it when searching for code strings associated with:

  • IoCs
  • Vulnerable code
  • Malware

Recon-NG
Recon-NG is a Python-based tool that enables researchers to automate redundant, manual tasks. It offers:

  • Independent modules
  • Database interaction
  • Built-in functions for convenience
  • Interactive help
  • Command completion

Creepy
Another Python-based technology, Creepy is a geolocation OSINT tool that collects data from various online sources, including social media and image hosting sites. Users can

  • Create maps
  • Filter searches based on exact location and/or date
  • Export data

theHarvester
With theHarvester, users can search for:

  • Emails
  • Subdomains
  • IP addresses
  • URLs

It offers both passive search and active DNS brute-forcing capabilities.

Shodan
Shodan is a search engine that both security teams and threat actors use to discover internet-connected devices and services.

The Shodan suite of products includes:

  • Search engine
  • Monitor to track devices
  • Maps
  • Collection of screenshots
  • Collected historical data

TinEye
TinEye is a reverse image search tool that allows researchers to upload images or use URLs. With reverse image lookup, someone can find where a picture was taken so that they can find a physical location.

Metagoofil
With Metagoofil, researchers can scan a domain’s documents and uncover the metadata. The tool provides information about files like:

  • PDFs
  • Word Documents
  • Excel Spreadsheets
  • PowerPoint Presentations

The metadata, or “data about data”, can include information such as:

  • User names
  • Email addresses
  • Printers
  • Software

What information can people find with OSINT?

While all OSINT information is publicly available, most people may not realize what is out there about them and how someone can find it. Even people who think they have a limited digital footprint would be surprised at what OSINT researchers can uncover.

Email Addresses
Today, most people have at least one personal and one professional email address. According to research, 90% of Americans have an email address, averaging 1.75 email addresses each. Typically, people use their email addresses to:

  • Log into social media
  • Access work resources
  • Use ecommerce applications
  • Register for media, like news, professional publication, and streaming services

Usernames
To maintain consistency, many people use the same username across different online services. For example, someone with an email [email protected] might also use jdoe as a social media handle. Further, these are typically the same types of usernames that corporations use for generating user IDs. With this information, cybercriminals can try to connect known usernames to compromised passwords as a part of credential-based attacks.

Addresses
Personal and professional addresses are easily discoverable. On its own, an address may not impact cybersecurity. However, when aggregated with a name or IP address, ethical and criminal actors can use the information to build a relationship with a target.

Phone numbers
When researchers collect and aggregate OSINT, phone numbers become even more valuable. When connecting a person’s name and phone number, someone can spoof, or create a fake version of, that phone number as part of an attack. For example, when a smishing attack sends a text message that appears to come from a trusted contact, the target is more likely to take the action that the attacker requests.

IP Addresses
When someone obtains an IP address, it gives them the ability to do a reverse lookup that gives them a lot of information about the server hosting a domain, including:

  • City
  • State
  • Zip code
  • Open ports

Free threat exposure report

See how a social engineer is most likely to contact you along with how an attacker might attempt to compromise you with Picnic’s free threat exposure report—CheckUp Light.


How do cybercriminals use OSINT for social engineering?

The first step to a successful social engineering attack is to gain a target’s trust or buy-in. People may be skeptical enough to ignore an email from a Nigerian prince, but they’re far less likely to ignore an email from their boss or human resources department.

Cybercriminals leverage OSINT so that they can build their attacks around information that will prompt someone to take an action that’s against their best interests. Further, cybercriminals collect and correlate various data types so that they can build out robust attacks. They rarely just use one type of data, like an email address.

Email Attacks
Phishing, spear phishing, and whaling are all typically email-based social engineering attacks. However, they use OSINT in subtly different ways.

Phishing
With a phishing attack, cybercriminals send out high volumes of fake emails, pretending to come from a legitimate entity. In this case, they really only need the email domain of the entity they want to impersonate.

For example, in a sophisticated attack targeting Office 365 credentials, cybercriminals imitated the domain for the US Department of Labor. They created domains like dol-gov.com, using a legitimate dol.gov domain for replies. The emails sent fake bidding instructions with a PDF that redirected the target to a phishing site where the criminals collected credentials.

Spear Phishing
With a spear phishing attack, cybercriminals might start by doing a LinkedIn search to find someone new to an organization in a high-visibility position, like a Chief Executive Officer (CEO). Once the cybercriminals have this information, they can search LinkedIn for people who will work directly with the new CEO. 

They find the organization’s domain and make a fake, or spoofed, version of it. For example, fakcompany.com would be fakecompany.io. With this fake domain, they create a form that hides the “.io” so that it looks like it’s from the organization’s legitimate domain. 

Building on this, they can then find examples of past statements that the new hire made for the email’s text. They email the form to the targets that they found on LinkedIn, requiring them to supply login credentials when they complete it.  
Between 2013 and 2015, cybercriminals used a spear phishing attack to steal $100 million from Google and Facebook. In this case, they created a fake computer manufacturing company, then sent invoices to targeted employees under the guise of being the legitimate services provider. Instead of paying the real provider, the companies directed the deposits to the cybercriminals’ bank accounts. 

Vishing
Also called “phone phishing” or “voice phishing” attacks, cybercriminals call their targets to deploy the attack. During a vishing attack, cybercriminals will often incorporate pretexting, creating a situation that lures the target into taking action.

Many cybersecurity awareness training modules include pretexting scenarios where someone calls a new employee, pretending to be from human resources. For this attack to work, cybercriminals need to do their OSINT research.

For large organizations that might have upwards of 100 global new hires per week, this scenario provides cyber attackers a significant return on investment. To be successful, attackers need a few different types of OSINT data. First, they need to find people on LinkedIn who recently announced that they joined an organization. Next, they need to find the VOIP data for the organization’s phone system so that they can spoof it. Then, they create a fake HR portal that sends data directly to them. They call the new employees, telling them that to get paid they need to confirm payment data by clicking on a link that they’re sending while on the phone. When the targets enter their credentials, the cybercriminals collect it.

In 2020, attackers compromised 130 Twitter accounts with a vishing attack. Twitter classified this as a phone spear phishing attack, saying that cybercriminals called employees and tricked them into revealing account credentials.

How OSINT Enables Cybersecurity Teams

The good news for organizations is that their security teams can also use OSINT. The information itself is benign. The danger or benefit comes from how someone uses it.

When organizations use OSINT to protect themselves, they can follow the same processes as threat actors. When security teams have access to the same publicly available information that malicious actors have, they can mitigate risk by reducing their digital footprint or implementing additional security controls.

Discover Public-facing Assets
Most security teams leverage OSINT to detect assets connected to the public internet. For example, many security teams use Shodan to detect IoT devices so that they can implement controls or protections.

Locate Information Outside Organization Boundaries
Sometimes, employees share information on social media without realizing that a little personal information can lead to an attack that leads to a breach.

For example, an employee might list their telephone number on LinkedIn. With this information, skilled attackers can implement a successful vishing or smishing attack that could compromise both the personal and corporate accounts of the employee.

When security teams have visibility into this risk, they can implement preventative measures that reduce risk, in this case working with the employee to remove the phone number before it can be leveraged in a social engineering attack.

Identify External Threats
When security teams have OSINT tools, they can monitor dark web forums for stolen credentials that compromise the organization’s security.

According to research, 70% of users tied to breach exposures from 2021 or earlier were still reusing the exposed credentials. Further, more than two out of three people use the same passwords across multiple accounts, meaning a compromised personal password could impact someone’s professional login credentials.

Security teams that can find and link employee personal and professional leaked credentials can use this information to make sure these credentials are no longer being used.

Enhanced Penetration Tests
Penetration tests look for weaknesses in an organization’s security program. As part of this process, penetration testers start with the reconnaissance phase to map out the attack surface of the target. This involves running OSINT, looking for accidental sensitive information leaks across social media, data brokers, and other publicly available data locations. Then they leverage this information to aid their ethical social engineering attacks.

With regular OSINT monitoring, security teams can reduce the number of findings by proactively identifying and mitigating these risks.

Design Adversary Emulations
When security teams engage in adversary emulations, they follow threat actor tactics, techniques, and procedures (TTPs) to test their defensive controls.

For example, when security teams want to emulate a remote desktop protocol attack, they need to follow the same steps that attackers do. Many security teams focus on the steps that attackers take once they gain access to systems because they lack the OSINT visibility to emulate attackers’ social engineering and credential theft capabilities.

When security teams can effectively obtain publicly available data, like information employees post on social media, they can create more realistic emulations. By identifying employees that attackers might target, they can implement controls that proactively address these risks.

For large organizations that might have upwards of 100 global new hires per week, this scenario provides cyber attackers a significant return on investment. To be successful, attackers need a few different types of OSINT data. First, they need to find people on LinkedIn who recently announced that they joined an organization. Next, they need to find the VOIP data for the organization’s phone system so that they can spoof it. Then, they create a fake HR portal that sends data directly to them. They call the new employees, telling them that to get paid they need to confirm payment data by clicking on a link that they’re sending while on the phone. When the targets enter their credentials, the cybercriminals collect it.

In 2020, attackers compromised 130 Twitter accounts with a vishing attack. Twitter classified this as a phone spear phishing attack, saying that cybercriminals called employees and tricked them into revealing account credentials.

Picnic: Automated OSINT Monitoring and Remediation for Enhanced Cybersecurity
Picnic is the first technology platform that allows organizations to fully and automatically harness OSINT for defensive purposes.

The platform provides enterprise security teams with the capability to instantly emulate attacker reconnaissance on the entire OSINT footprint of their organization and its people across the surface web, social media, data brokers, breach repositories, and the deep and dark web. At the same time, Picnic’s technology continuously hunts and flags any exposed data and PII that would be of value to threat actors, identifies likely human targets and pathways to compromise, streamlines external data footprint cleansing, and enhances existing security controls to prevent attacks.

Since attackers have OSINT exposure too, Picnic also monitors for suspicious domains and other attacker infrastructure before these can be leveraged against an organization’s people.

With these preemptive and continuous capabilities, organizations gain an unprecedented level of visibility and control over their OSINT footprint and can substantially reduce a threat actor’s ability to use OSINT successfully against them.

Picnic’s technology marks a decisive moment in the history of OSINT, as it takes away the asymmetrical advantage threat actors have had until now.

Attackers need OSINT to craft their attacks. The public data vulnerabilities revealed during a cybercriminal’s reconnaissance are ultimately what lead to phishing, credential compromise, ransomware, malware, and the like.

Picnic’s platform addresses this problem head-on by providing enterprises and their people with the power to automatically know the full extent of their OSINT exposure, proactively remediate their human risk, and preemptively neutralize the pathways to compromise that their public footprint reveals. In this way, they can detect and prevent attacks before they happen on a scale not previously possible.

SANS FIRST LOOK WHITEPAPER ON PICNIC

SANS First Look Report

Jeff Lomas of SANS discusses the importance of knowing your attack surface from the outside in and how Picnic can help organizations tackle the largest problem in cybersecurity—social engineering.

Just a little bit of exposed personal data can go a long way for a hacker

Hackers today use our exposed personal data against us. More than 90% of the time, cyberattacks are specifically crafted from users’ public data. To a hacker and to cyber specialists in general, this exposed, publicly available information is known as OSINT, or Open-Source Intelligence. OSINT can be any publicly available information a hacker can find on a target, such as data from LinkedIn, Instagram, and other social media sites, data brokers, breach repositories, and elsewhere. Hackers use this data to craft and power social engineering attacks. It is the data that tells the attacker who is a vulnerable and valuable target, how best to contact them, how to establish trust, and how ultimately to trick, coerce, or manipulate them. Social engineering attacks fool people into performing a desired action and criminals use social engineering to lure targets into handing over personal information, opening malicious files, or granting access to sensitive data.

In this post, we highlight some of the ways in which bad actors use our information in social engineering campaigns. Understanding the various ways in which even a limited amount of exposed personal information can be weaponized by social engineers can help us not only become more vigilant and cautious but will hopefully also motivate us to take proactive measures to protect ourselves and our companies before attacks happen.

Hackers need—and harvest!—personal information to craft attacks

In order to identify, choose, and plan attacks against potential targets, threat actors must first conduct OSINT reconnaissance. Hackers have a variety of tools that automate this process. They begin by searching for information and selecting a vulnerable target, and then using the target’s data to create a compelling story that will trick them. The social engineer uses one of several means, such as an email, social media, or a phone call, to contact the target and establish trust. If the communication is convincing enough, the victim will be fooled and unwittingly click a malicious link or give the attacker sensitive information that will be used against them or their company. 

On account of the essential role that public data plays in social engineering attacks, it behooves us to be aware of, and especially limit, the amount of personal information we share online. The larger our digital footprint is, the larger our attack surface is and the more visible we are to social engineers. The more information attackers have on a target, the easier it is for them to craft convincing, and ultimately successful, social engineering attacks. The less visible we are, the less attractive we are to hackers and the less paths to compromise there are to be exploited.

While deleting oneself entirely from the internet in the 21st century is not viable, by carefully manicuring what you share and with whom you share it, you can significantly reduce your visible attack surface and prevent social engineering attacks.

Even a little bit of exposed information can be dangerous

Hackers don’t need much personal information to wreak havoc on your life. They can do a significant amount of damage with just your cell phone number. Typing your number into a people search site, for instance, can reveal your personal information to an attacker in just a few seconds. This information can then be used for social engineering, identity theft, doxing, or other malicious actions, such as taking over your email and other accounts. 

With only your phone number, a hacker can easily determine your email address. They can then contact your mobile provider and claim to be you, route your number to their phone, log into your email, click ‘forgot password,’ and have the reset link sent to them. Once they have your email account, all of your other accounts are potentially vulnerable. This is one reason to avoid using the same username and password across multiple accounts! 

Once acquired, a hacker could also decide to ‘spoof’ your phone number. This makes your number appear on a caller ID even though it is not you. Using this method, a bad actor can impersonate you to trick one of your friends or colleagues, or call you from a spoofed number, one that you may recognize or trust, in an attempt to socially engineer you or to record your voice for use in another scam.

The fact that a hacker can do so much with just a limited amount of information should make us think twice about what we share publicly, even if it’s only our phone number. To see some of your exposed personal data, get your free report below.

GET YOUR FREE REPORT

See your exposed personal data

Exposed data and credential compromise

Hackers can also do a lot of damage with exposed login credentials. Usernames, email addresses, and corresponding passwords become available on the dark web (and the public web!) once they have been involved in a data breach. You can find out if your personal data has been compromised in a breach by checking haveIbeenpwned.com, for example. Whenever this type of information gets exposed, it can leave users vulnerable to credential compromise.

Credential compromise, also known as ‘credential stuffing,’ happens when an attacker obtains a list of breached username and password pairs (“credentials”) from the dark web and then uses automated scripts or ‘bots’ to test them on dozens or even hundreds of website login forms with the goal of gaining access to user accounts. There are massive lists of breached credentials available to hackers on the black market and, since most people reuse passwords across different accounts, it is inevitable that some of these credentials will work on other accounts, either personal or corporate.

Once hackers have access to a customer account through credential stuffing, they can use the account for various nefarious purposes such as stealing assets, making purchases, or obtaining more personal information that can be sold to other hackers. If the breached credentials belong to an employee, the hacker can use that access to compromise a company’s systems and assets. 

Since credential compromise relies on the reuse of passwords, avoiding the reuse of the same or similar passwords across different accounts is critical. Always use strong passwords that are difficult to guess and change them frequently. Additionally, using multi-factor authentication, which requires users to authenticate their login with something they physically have and something they personally know, is a good defense against credential stuffing since an attacker’s bots cannot replicate this validation method. 

Recent real-world examples reveal the dangers of exposed personal data for companies

Companies should be especially wary of the role exposed personal data of employees plays in cyberattacks. Three recent examples that made headlines highlight how just a limited amount of exposed employee information can be used to craft a successful social engineering campaign and breach organizations. 

Twilio and Cloudflare

In August, hackers targeted two security-sensitive companies, Twilio and Cloudflare, as part of a larger ongoing campaign dubbed “Oktapus” that ultimately compromised more than 130 organizations and netted the attackers nearly 10,000 login credentials. In the case of Twilio, the hackers began by cross referencing employee public data from Twilio’s LinkedIn roster (the starting point of most attacks) against existing exposed 3rd party breach data sets (e.g., haveibeenpwnd.com) and data broker data (e.g., white pages). This gave the attackers a list of personal information of employees to target. The hackers then created a fake domain and login page that looked like Twilio’s (twilio-sso.com or twilio-okta.com). Using the acquired personal data, they then sent text messages to employees, which appeared as official company communications. The link in the SMS message directed the employees to the attackers’ fake landing page that impersonated their company’s sign-in page. When the employees entered their corporate login credentials and two-factor codes on the fake page, they ended up handing them over to the attackers, who then used those valid credentials on the actual Twilio login page to access the systems illegally. 

exposed personal data

Although Cloudflare was also targeted in this way, they were able to stop the breach through their use of FIDO MFA keys. Even though they were able to keep the attackers from accessing their systems through advanced security practices, Cloudflare’s CEO, senior security engineer, and incident response leader stated that “This was a sophisticated attack targeting employees and systems in such a way that we believe most organizations would be likely to be breached.”

Indeed, the exposed personal data used to power the Oktapus attacks shows how dangerous even a small amount of public data can be in the hands of a social engineer.

Cisco 

In another example from May of this year, the corporate network of multinational security company Cisco was breached by hackers with links to both the Lapsus$ and Yanluowang ransomware gangs. In this case, the hackers acquired the username or email address of a Cisco employee’s Google account along with the employee’s cell phone number. They targeted the employee’s mobile device with repeated voice phishing attacks with the goal of taking over the Google account. The employee was using a personal Google account that was syncing company login credentials via Google Chrome’s password manager. The account was protected by multi-factor authentication (MFA), however, so the hackers posed as people from the technical support departments of well-known companies and sent the employee a barrage of MFA push requests until the target, out of fatigue, finally agreed to one of them. This gave the attackers access to the Cisco VPN through the user’s account. From there the attackers were able to gain further access, escalate privileges, and drop payloads before being slowed and contained by Cisco. The TTPs (techniques, tactics, and procedures) used in the attack were consistent with pre-ransomware activity.

Uber 

Most recently, the ride-hailing company Uber was breached by a hacker thought to be linked to the Lapsus$ group, who gained initial access by socially engineering an Uber contractor. The attacker had apparently acquired the corporate password of this contractor on the dark web after it had been exposed through malware on the contractor’s personal device. The attacker then repeatedly tried to login to the contractor’s Uber account, which sent multiple two-factor login approval requests to the contractor’s phone.  Finally, the hacker posed as Uber IT and sent a message asking the contractor to approve the sign-in. After successfully exhausting the contractor, the approval was granted, and this provided the hacker with the valid credentials needed to gain access to Uber’s VPN. Once inside, the hacker found a network share that had PowerShell scripts. One of these scripts contained admin credentials for Thycotic [a privileged access management solution]. Once the hacker had access to this, he was able to get access to all other internal systems by using their passwords. 

The Uber hack is a prime example of how, with only a limited amount of exposed personal data and some social engineering, a hacker can easily trick, manipulate, or coerce a human and compromise a company’s systems. See our key takeaways and remediation recommendations.

Limiting exposed personal data to prevent attacks

The examples provided here illustrate some of the common ways our personal information can be successfully weaponized by today’s hackers. It is now more urgent than ever for people and companies to know and manage their exposed public information proactively to help prevent attacks. Attackers are opportunists who care about their ROI. By limiting exposed personal data, it becomes more difficult and therefore more expensive for threat actors to succeed in social engineering attacks. Companies that recognize this fact pattern and take action to protect their employees will be more likely to avoid expensive and damaging breaches.

FOR LAPSUS$ SOCIAL ENGINEERS, THE ATTACK VECTOR IS DEALER’S CHOICE

By Matt Polak, CEO of Picnic

Two weeks ago, at a closed meeting of cyber leaders focused on emerging threats, the group agreed that somewhere between “most” and “100%” of cyber incidents plaguing their organizations pivoted on social engineering. That’s no secret, of course, as social engineering is widely reported as the critical vector in more than 90% of attacks.

LAPSUS$, a hacking group with a reputation for bribery and extortion fueled by a kaleidoscope of social engineering techniques, typifies the actors in this emerging threat landscape. In the past four months, they’ve reportedly breached Microsoft, NVIDIA, Samsung, Vodafone and Ubisoft. Last week, they added Okta to the trophy case.

For the recent Okta breach, theories abound about how the specific attack chain played out, but it will be some time before those investigations yield public, validated specifics. 

As experts in social engineering, we decided to answer the question ourselves—with so many ways to attack, how would we have done it? Our thoughts and findings are shared below, with some elements redacted to prevent malicious use.

How Targeted was this Social Engineering Attack?

To start, we know that Okta’s public disclosure indicates the attacker targeted a support engineer’s computer, gained access, installed software supporting remote desktop protocol (RDP) and then used that software to continue their infiltration:

“Our investigation determined that the screenshots…were taken from a Sitel support engineer’s computer upon which an attacker had obtained remote access using RDP…So while the attacker never gained access to the Okta service via account takeover, a machine that was logged into Okta was compromised and they were able to obtain screenshots and control the machine through the RDP session.”

For attackers to successfully leverage RDP, they must:

  1. Be able to identify the location of the target device—the IP address.
  2. Know that the device can support RDP—Windows devices only.
  3. Have knowledge that RDP is exposed—an open RDP port is not a default setting.

Let’s take a look at each of these in more detail: 

How Can an Attacker Identify Target Devices to Exploit RDP? 

Sophisticated attackers don’t “boil the ocean” in the hope of identifying an open port into a whale like Okta—there are 22 billion connected devices on the internet. In fact, LAPSUS$ is a group with a history of leveraging RDP in their attacks, to the point that they are openly offering cash for credentials to the employees of target organizations if RDP can be installed—quite a shortcut. 

Putting aside the cultivation of an insider threat, attackers would rightly assume a company like Okta is a hard target, and that accessing it via connected third parties would be an easier path to success.

Our team regularly emulates sophisticated threat actor behaviors, so we started by mapping the relationships between Okta and different organizations, including contractors and key customers. Cyber hygiene problems are often far worse for large organizations than individuals, and our methods quickly uncovered data that would be valuable to threat actors. For example, Okta’s relationships with some suppliers are detailed here, which led us to information on Sitel / Sykes in this document. Both are examples of information that can be directly weaponized by motivated attackers.

Two killer insights from these documents:

  1. Sykes, a subsidiary of Sitel, provides external technical support to Okta. 
  2. Sykes uses remote desktop protocol as a matter of policy.

This information makes an attacker’s job easier, and would be particularly interesting to a group like LAPSUS$—an RDP-reliant contractor with direct access to Okta’s systems is a perfect target.

Recon 101: Exploit Weak Operational Security Practices

With a target company identified, we ran a quick search of LinkedIn to reveal thousands of Sitel employees discussing different levels of privileged access to their customer environments. These technical support contractors are the most likely targets of attacks like the ones catching headlines today. Despite the investigation and negative publicity associated with this attack, more than a dozen Sitel employees are still discussing privileged access in the context of their work with Okta (nevermind the dozens of other companies). 

Now that we have defined this group, our focus narrows to deep OSINT collection on these individuals—an area where Picnic has substantial expertise. OSINT stands for open-source intelligence, and it is the process by which disparate pieces of public information are assembled to create a clear picture of a person’s life, a company, a situation, or an organization. Suffice to say that our standard, automated reconnaissance was sufficient to craft compelling pretext-driven attacks for most of our target group. 

To cast this virtual process in a slightly different light, imagine a thief casing your neighborhood. Good thieves spend weeks conducting reconnaissance to identify their targets. They walk the streets and take careful notes about houses with obscured entryways, unkempt hedges, security lights and cameras, or valuables in plain sight. 

Social engineers are no different: they are essentially walking around the virtual world looking for indicators of opportunity and easy marks.  

Before we explore how to go from reconnaissance to the hardware exploit, let’s recap:

  1. We are emulating threat actor behaviors before Okta’s breach.
  2. We conducted organizational reconnaissance on our target: Okta.
  3. We identified a contractor likely to have privileged access to the target: Sitel.
  4. We narrowed the scope to identify people within Sitel who could be good targets.
  5. We further narrowed our focus to a select group of people that appear to be easy targets based on their personal digital footprints.

All of this has been done using OSINT. The next steps in the process are provided as hypothetical examples only. Picnic did not actively engage any of the identified Sitel targets via the techniques below—that would be inappropriate and unethical without permission. 

Identifying the Location of the Device for RDP Exploit

There are three ways that attackers can identify the location of a device online: 

  1. Pixel tracking
  2. Phishing
  3. OSINT reconnaissance

Just as we conducted OSINT reconnaissance on people and companies, the same process is possible to identify the location of the target device. By cross-referencing multiple sources of information such as data breaches and data brokers, an attacker can identify and leverage IP addresses and physical addresses to zero in on device locations. This is always the preferred approach because there is no risk that the attacker will expose their actions. 

Pixel tracking is a common attacker (and marketer!) technique to know when, and importantly where, an email has been opened. For the attacker, this is an easy way to identify a device location. Phishing is similar to pixel tracking: a clicked link can provide an attacker with valuable device and location intelligence, but pixel tracking only requires that an image be viewed in an email client. No clicks necessary. 

Pixel tracking and phishing are examples of technical reconnaissance that were more easily thwarted pre-COVID, when employees were cocooned in corporate security layers. With significant portions of knowledge workers still working at home, security teams must contend with variable and amorphous attack surfaces.

For social engineers, this distribution of knowledge workers is an asymmetric advantage. Without a boundary between work-life and home-life—the available surface area on which to conduct reconnaissance and ply attacks is essentially doubled.

Social engineering’s role in the RDP exploit

According to Okta’s press release, an attacker “obtained remote access using RDP” to a computer owned by Sitel. Based on threat actor emulation conducted by our team and the typical LAPSUS$ approach, it is clear that social engineering played a key role in this attack, which was likely via a targeted spear phishing campaign, outright bribery, or similar delivery mechanism, which would have provided attackers not only with device location information needed for the RDP exploit, but also important information about the device and other security controls. 

Remember that social engineers are hackers that focus on tricking people so they can defeat technical controls. Tricking people is easy when you know something personal about them—in fact, our research indicates attackers are at least 200x more likely to trick their targets when the attack leverages personal information. 

The amount of time, energy, and resources required to complete this reconnaissance was significant, but it was made easier by the two key documents found during our initial recon on the target. While there are other breadcrumbs that could have led us down the same path, many of those paths offered less clear value, while these two documents essentially pointed to “easy access this way.” Finding these documents quickly and easily means that hackers are likely to prioritize this attack path over others—the easier it is, the less time and resources it consumes, and the greater the return on effort. 

Key learnings for cyber defenders

Recognize you are at war. Make no mistake about it, we are in a war that is being fought in cyberspace, and unfortunately companies like Okta and Sitel are collateral damage. Just as in a hot war, one of the most successful methods for countering insurgent attacks is to “turn the map around” to see your defenses from the perspective of the enemy. This outside-in way of thinking offers critical differentiation in the security-strategy development process, where we desperately need to change the paradigm and take proactive measures to stop attacks before they happen. I wrote another short article about how to think like an attacker that might be helpful if you are new to this approach.

Be proactive and use MITRE—all of it. The prevailing method used by cyber defenders to map attacker techniques and reduce risk is called the MITRE ATT&CK framework. The design of the framework maps fourteen stages of an attack from the start (aptly called Reconnaissance) through its end (called Impact)—our team emulated attacker behaviors during the reconnaissance stage of the attack in this example. Cyber defenders are skilled at reacting to incidents mainly because legacy technologies are reactive in nature. MITRE recommends a proactive approach to remediating the reconnaissance stage to “limit or remove information” harvested by hackers. Defenders have an opportunity to be proactive and leverage new technologies that expand visibility and proactive remediation beyond the corporate firewall into the first stage of an attack. Curtailing hacker reconnaissance by removing the data hackers need to plan and launch their attack is the best practice according to MITRE. 

Get ahead of regulations. Federal regulators are also coming upstream of the attack and have signaled a shift with new SEC disclosure guidance, which requires companies to disclose cybersecurity incidents sooner. Specifically, one key aspect of the new rule touches on “…whether the [company] has remediated or is currently remediating the incident.” New technologies that emulate threat actor reconnaissance can make cyber defenders proactive protectors of an organization’s employees, contractors, and customers long before problems escalate to front page news. These new technologies allow companies to remediate risk at the reconnaissance stage of the attack—an entirely new technology advantage for cyber defenders. 

Every single attack begins with research. Removing the data that hackers need to connect their attack plans to their human targets is the first and best step for companies who want to avoid costly breaches, damaging headlines, and stock price shocks.

Cybercrime awareness is no longer enough to reduce risk

People’s perceptions have changed. Not so long ago we thought nothing of kids playing outside all day alone, unchaperoned visits to a friend’s house, walking to school alone – the list goes on. But as times have changed, we have become much more vigilant about personal safety. The same can be said for the online world. The majority of us are well-aware of cybercrime and are generally on our guard for suspicious emails and websites. Yet despite this everyday vigilance, social engineers find ways to take advantage of our online behavior.

Cybercrime: We are already suspicious

When it comes to business IT security, company leaders generally want to establish a strong cybersecurity culture within their organizations. It’s a very natural thing to do. Human resources department training typically focuses on awareness and highlights typical mistakes that open the doors to a business’ systems and data. It shines a spotlight on what it means to be aware. But conducting security awareness training is not enough to reduce risk completely. Why? The truth is that most people are already “cyber aware.” We have all already formed an opinion on cybersecurity, and whom we trust.

Just think about it. How often do you hear a knock on the door these days, except from an unexpected visitor? A generation ago, a ringing doorbell was nearly cause for celebration. Everyone in the house leaped into action in near perfect unison. But people’s attitudes have changed. We are now not just suspicious, but actually distrustful, of people knocking on our door. We are conscious that not everyone who calls to the door nowadays is legit. It’s born out of the fact that we are aware of the many door-to-door scams or have been a victim of a cold caller ourselves. Besides, due to smartphones, we already know in advance if someone is dropping by – anyone else is considered an uninvited caller. In this way, the escalation of increasingly invasive marketing and social networking manipulation, coupled with technology that makes us easier to track and easier to target, has driven a culture-wide sense of security awareness.

The same can be said for cybersecurity. Nearly everyone is aware of the classic Nigerian 401 scam. In return for a few thousand dollars, email recipients are guaranteed several million in return. Word spread already years ago that this, and many others like it, was a scam; and people now ignore such basic scams out of habit. Like the bogus salesmen calling to the door, we already have a heightened sense of awareness, causing us to be more cautious.

Cybersecurity training: Awareness alone doesn’t solve the problem

There is no question that awareness of cybersecurity is high now and has been for a couple of years – and that’s a good thing. The problem is that while cyber security training within an organization is well intentioned, it is solely invested in creating awareness. At this point, however, we are way past awareness. People are already suspicious of bogus email, SMS messages and calls.

The real focus should be on personal attack surface, e.g. the aforementioned data that makes us easier to track and to target. Attention needs to be given to the significance of personal information, the sharing of it and how to defend it. While we are “aware” cybercrime exists, many of us may not fully understand the implications of actions that open the door to cybercrime. This is partially why social engineering and other large-scale data breaches are often so successful – and you only need to look at the stats.

A 2017 Tenable survey found that nearly all participants were aware of security breaches. What the survey also revealed was that many admitted to not taking some degree of precaution to protect their personal data and have not changed their security habits in the face of a public threat. Not surprisingly, another study from Stanford University and security firm Tessian revealed that nine in ten (88%) data breach incidents are caused by employees’ mistakes – and costly ones at that. In 2020 alone, data breaches cost businesses an average of $3.86 million.

So, what, in light of this, are the best steps to start mitigating risk?

Reduce Employee Burden: Recognition of a person’s attackable surface

When it comes to reducing risk through employee training, businesses need to recognize that many people fall into one of two categories:

  1. There are those who are very concerned about personal data security. This cohort want to keep their data safe and do not want anyone “messing” with their personal information. They are already very much engaged with cybersecurity – they are not the problem.
  2. Then there are those who are the reverse. They are not interested in cyber security. They are aware but they don’t feel at risk, and as such are not willing to spend effort on it.

Trying to “convert” the second group of employees to become champions of cyber hygiene or cybersecurity can be, for a want of a better phrase, a waste of time. Until you can put cybersecurity into personal terms for each person, it is nearly impossible to change entrenched habits and opinions.

However, if you can pinpoint which extra-professional avenues of attack are most likely for an individual’s data profile, you may be able to make progress against this skepticism. It’s about recognition of a person’s attackable surface. Concern for one’s own personal safety will always trump concerns for company safety. Or, put in analog terms, you don’t have to convince suspicious people not to answer the phone; you need to convince them not to publish their phone number in the first place. The smarter everyone is about his or her personal data, the more secure the company will be.

Security awareness training is a common corporate exercise – but is no longer enough to reduce risk. By empowering your employees to safeguard their own digital footprints – along with company data – you can start to develop really formidable foes to cybercrime.

Cybersecurity is a new HR benefit

Cybersecurity has traditionally been seen as a job for IT departments – and most employees assume that cybersecurity is simply a technical issue. But an examination of current threat types shows that social engineering attacks on employees is now a major concern for corporate security. However, protecting employees from social engineering attacks means protecting the whole person – at work and at home. The challenge becomes the line between what is corporate and what is personal. Innovative Human Resources (HR) departments have a solution. Cybersecurity can be a gift to employees, not unlike health insurance. This new benefit further underlines HR’s important role in promoting a healthy corporate culture…including cybersecurity.

Cybersecurity – The role of HR in mitigating risk

It is estimated the financial impact of cybercrime costs the global economy nearly $3 million per minute with 27% of all cyberattacks resulting from employee errors. Many companies are aware that employees are the weakest link in an organization’s cybersecurity. 9 out of 10 times, it is unintentional. Yes, you might get the odd disgruntled employee, but more often than not, employee negligence is the primary source of data breaches. From falling afoul of phishing, to accidental installation of malicious apps and using unsecure networks, the variety and prevalence of cyber-traps are growing daily. Even common behaviors that seem trivial, like shared passwords, lax BYOD habits, remote working, and leaving devices laying around – all can lead to loss of data or even large sums of money.

Since people are a key factor in many cybersecurity-related issues, HR should be involved to minimize the risk. Why? HR is uniquely equipped to humanize and promote security within an organization. Whether it’s through the onboarding process, providing security guidelines or educating employees, the HR department can cover the majority of cybersecurity threats – and your company will be much safer for it. “HR leaders can engage employees in recruitment, culture, and education to boost awareness and adoption of new policies to help IT teams develop a “human firewall” for your organization, turning employees – your greatest security threat – into your greatest asset,” says Marcy Klipfel  of Businessolver.

Some forward-thinking companies already employ the skills and insight of their HR teams to enhance risk mitigation. But as the digital footprint of an individual continues to grow like a ripple effect, and the lines continue to blur between personal and business use of technology, modern cybersecurity requires more than firewalls, antivirus and HR polices. If a business is serious about protecting itself and its employees, it’s time the business started thinking about offering cybersecurity as a HR benefit.

Cybersecurity as an HR benefit

We live in a digital era and, as such, it’s likely that most, if not all, of your employees have a digital footprint. This is normal. Daily, most of us engage in some form of online activity, such as photo sharing, online dating, banking, shopping, gaming, and social/professional networking. Like it or not, these all add to one’s digital footprint. And that’s not all. Others may post photos or information about us online. And then there are search engine histories, smart phone geolocation data, etc.

While an individual’s growing online digital footprint and relentless tracking of all their thoughts and data might not be a problem to them, it may be exploited by those with malicious intent. What your employees do and say online, or how they use digital devices, can make them and your organization vulnerable to a range of security threats. Most hackers are just looking for that one right chance and an employee’s online activities can create an ideal passageway into your company, potentially resulting in unintended, or even catastrophic, consequences.

Unplugging yourself or an employee from the rest of the world is not really an option. But what is an option is that your company can help protect its employees – while protecting itself. While it’s a novel concept, data hygiene management should now be considered the newest employee benefit. Like a person’s health, if things go bad, cybercrime can be very costly for the individual. Like health insurance benefits, cybersecurity benefits reduce the financial risk and give peace of mind.  

Future of cybersecurity

The biggest challenge for HR is explaining the threat of social engineering to individuals while not being perceived as “Big Brother.” Employees can be very wary of privacy, though at the same time may not be very aware of the vulnerability of their personal digital footprint. But everyone is susceptible to cyberattacks and the impact can be severe for both individuals and their employers. The perceived value of cybersecurity as an HR benefit will only increase with time – and with the preponderance of cybercrime. Prescient employers are making moves now to bolster their cybersecurity culture and offer a competitive benefit that will be attractive to employee candidates.

Social engineering: Opportunity makes the thief

It is understandable that, when cybercrime happens to you, you can feel like you were targeted. And you certainly might be correct. However, more often than not, you weren’t originally the target at all. You just provided the best opportunity to the criminal. In most cases, social engineering involves an opportunistic attack that doesn’t – initially – target anyone in particular. Instead, attackers search broadly for weaknesses or vulnerabilities that they can use to mount a more in-depth attack. If they snare a victim in their net, they can then go to work.

It’s nothing personal

Unwanted messages and calls bombard nearly all of us on a regular basis. For most, these solicitations via junk mail, spam email and robocalls are just incredibly annoying – even inducing a bit of eyerolling. Most of the time, we simply hit ignore, mark as spam, delete or toss junk mail in the rubbish knowing that these messages are most likely so-called mass-market scams. Many people are often surprised by the amount of junk or spam they receive, especially because so many of the scams are so obviously illegitimate. But the reason you still get emails from a Nigerian prince offering cash out of the blue in exchange for something is because people continue to fall for such stories. Not huge numbers, but a few. And that’s all it takes to make a profit.

Opportunist attacks are not personalized to their victims and are usually sent to masses of people at the same time. They are akin to drift netters, casting their nets “out there” – whether it’s ransomware, spyware or spam – and see what comes back. The aim is to lure and trick an unsuspecting victim to elicit as much information as possible using SMS, email, WhatsApp and other messaging services, or phone calls. Their motives are primarily for financial gain. They just want money. They don’t have a vendetta against a particular person or company. It’s a virtually anonymous process.

Phishing scams: Opportunity makes the thief

The Nigerian prince story is on the lower end of the scale in terms of a convincing narrative. However, the grammar errors and simplicity in these attacks are actually intentional as they are serving as a filter. They are filtering the “smart” responders out with the goal of refining their list, allowing them to more strategically target their victims. But have you ever stopped to ask yourself why you got the email in the first place? Spam may be a reality, but you are probably getting unwanted attention because you have a wide personal “attack surface.”

Our digital footprint is more public than we would ever imagine. Every time we perform an online action, there is a chance we are contributing to the expansion of our digital footprint. So, while you and I might be aware that the Nigerian princes of the world are not genuine – more sophisticated and successful attacks are also in circulation. If you have a large and messy digital footprint, you are putting yourself on the opportunist radar and are in line to receive more refined and authentic looking queries.

Since cybercriminals are continuously devising clever ways to dupe us in our personal lives, it is just as easy to hoodwink employees into handing over valuable company data. In fact, according to Verizon’s Data Breach Digest 74% of organizations in the United States have been a victim of a successful phishing attack. Fraudsters know that the way to make a quick buck isn’t to spend months attempting to breach an organization’s security, it’s simply to ask nicely for the information they want so they can walk right through the front door.

Opportunity amid a pandemic

With social engineering opportunists tending to take advantage and capitalize on vulnerabilities exposed, the pandemic created ideal conditions to exploit businesses and corporations. In less than a month into the onslaught of the pandemic, phishing emails spiked by over 600% as attackers looked to capitalize on the stress and uncertainty generated by Covid-19. Businesses that were forced to work remotely became more susceptible to opportunists. The pandemic changed the attack surface, Researchers said,“… security protocols have completely changed – firewalls, DLP, and network monitoring are no longer valid. Attackers now have far more access points to probe or exploit, with little-to-no security oversight.”

To mitigate risk, focus on both threat and vulnerability

The standard corporate security structure is optimized to handle specific, targeted attacks on corporate assets. Unfortunately, social engineering is often overlooked because of the very non-specific nature of it. Attack by opportunity only requires unwitting cooperation by an employee who was not specifically targeted but self-selected simply by clicking on a link.

Social engineering may even be more dangerous in our pandemic-driven distributed work environments. Corporate and personal spheres overlap more than ever and can provide social engineer opportunists more footholds into our confidential lives – both private and corporate. Both individuals and corporate security leaders will do well to shift greater focus on vulnerability reduction to provide less opportunity to social engineers.