FOR LAPSUS$ SOCIAL ENGINEERS, THE ATTACK VECTOR IS DEALER’S CHOICE

By Matt Polak, CEO of Picnic

Two weeks ago, at a closed meeting of cyber leaders focused on emerging threats, the group agreed that somewhere between “most” and “100%” of cyber incidents plaguing their organizations pivoted on social engineering. That’s no secret, of course, as social engineering is widely reported as the critical vector in more than 90% of attacks.

LAPSUS$, a hacking group with a reputation for bribery and extortion fueled by a kaleidoscope of social engineering techniques, typifies the actors in this emerging threat landscape. In the past four months, they’ve reportedly breached Microsoft, NVIDIA, Samsung, Vodafone and Ubisoft. Last week, they added Okta to the trophy case.

For the recent Okta breach, theories abound about how the specific attack chain played out, but it will be some time before those investigations yield public, validated specifics. 

As experts in social engineering, we decided to answer the question ourselves—with so many ways to attack, how would we have done it? Our thoughts and findings are shared below, with some elements redacted to prevent malicious use.

How Targeted was this Social Engineering Attack?

To start, we know that Okta’s public disclosure indicates the attacker targeted a support engineer’s computer, gained access, installed software supporting remote desktop protocol (RDP) and then used that software to continue their infiltration:

“Our investigation determined that the screenshots…were taken from a Sitel support engineer’s computer upon which an attacker had obtained remote access using RDP…So while the attacker never gained access to the Okta service via account takeover, a machine that was logged into Okta was compromised and they were able to obtain screenshots and control the machine through the RDP session.”

For attackers to successfully leverage RDP, they must:

  1. Be able to identify the location of the target device—the IP address.
  2. Know that the device can support RDP—Windows devices only.
  3. Have knowledge that RDP is exposed—an open RDP port is not a default setting.

Let’s take a look at each of these in more detail: 

How Can an Attacker Identify Target Devices to Exploit RDP? 

Sophisticated attackers don’t “boil the ocean” in the hope of identifying an open port into a whale like Okta—there are 22 billion connected devices on the internet. In fact, LAPSUS$ is a group with a history of leveraging RDP in their attacks, to the point that they are openly offering cash for credentials to the employees of target organizations if RDP can be installed—quite a shortcut. 

Putting aside the cultivation of an insider threat, attackers would rightly assume a company like Okta is a hard target, and that accessing it via connected third parties would be an easier path to success.

Our team regularly emulates sophisticated threat actor behaviors, so we started by mapping the relationships between Okta and different organizations, including contractors and key customers. Cyber hygiene problems are often far worse for large organizations than individuals, and our methods quickly uncovered data that would be valuable to threat actors. For example, Okta’s relationships with some suppliers are detailed here, which led us to information on Sitel / Sykes in this document. Both are examples of information that can be directly weaponized by motivated attackers.

Two killer insights from these documents:

  1. Sykes, a subsidiary of Sitel, provides external technical support to Okta. 
  2. Sykes uses remote desktop protocol as a matter of policy.

This information makes an attacker’s job easier, and would be particularly interesting to a group like LAPSUS$—an RDP-reliant contractor with direct access to Okta’s systems is a perfect target.

Recon 101: Exploit Weak Operational Security Practices

With a target company identified, we ran a quick search of LinkedIn to reveal thousands of Sitel employees discussing different levels of privileged access to their customer environments. These technical support contractors are the most likely targets of attacks like the ones catching headlines today. Despite the investigation and negative publicity associated with this attack, more than a dozen Sitel employees are still discussing privileged access in the context of their work with Okta (nevermind the dozens of other companies). 

Now that we have defined this group, our focus narrows to deep OSINT collection on these individuals—an area where Picnic has substantial expertise. OSINT stands for open-source intelligence, and it is the process by which disparate pieces of public information are assembled to create a clear picture of a person’s life, a company, a situation, or an organization. Suffice to say that our standard, automated reconnaissance was sufficient to craft compelling pretext-driven attacks for most of our target group. 

To cast this virtual process in a slightly different light, imagine a thief casing your neighborhood. Good thieves spend weeks conducting reconnaissance to identify their targets. They walk the streets and take careful notes about houses with obscured entryways, unkempt hedges, security lights and cameras, or valuables in plain sight. 

Social engineers are no different: they are essentially walking around the virtual world looking for indicators of opportunity and easy marks.  

Before we explore how to go from reconnaissance to the hardware exploit, let’s recap:

  1. We are emulating threat actor behaviors before Okta’s breach.
  2. We conducted organizational reconnaissance on our target: Okta.
  3. We identified a contractor likely to have privileged access to the target: Sitel.
  4. We narrowed the scope to identify people within Sitel who could be good targets.
  5. We further narrowed our focus to a select group of people that appear to be easy targets based on their personal digital footprints.

All of this has been done using OSINT. The next steps in the process are provided as hypothetical examples only. Picnic did not actively engage any of the identified Sitel targets via the techniques below—that would be inappropriate and unethical without permission. 

Identifying the Location of the Device for RDP Exploit

There are three ways that attackers can identify the location of a device online: 

  1. Pixel tracking
  2. Phishing
  3. OSINT reconnaissance

Just as we conducted OSINT reconnaissance on people and companies, the same process is possible to identify the location of the target device. By cross-referencing multiple sources of information such as data breaches and data brokers, an attacker can identify and leverage IP addresses and physical addresses to zero in on device locations. This is always the preferred approach because there is no risk that the attacker will expose their actions. 

Pixel tracking is a common attacker (and marketer!) technique to know when, and importantly where, an email has been opened. For the attacker, this is an easy way to identify a device location. Phishing is similar to pixel tracking: a clicked link can provide an attacker with valuable device and location intelligence, but pixel tracking only requires that an image be viewed in an email client. No clicks necessary. 

Pixel tracking and phishing are examples of technical reconnaissance that were more easily thwarted pre-COVID, when employees were cocooned in corporate security layers. With significant portions of knowledge workers still working at home, security teams must contend with variable and amorphous attack surfaces.

For social engineers, this distribution of knowledge workers is an asymmetric advantage. Without a boundary between work-life and home-life—the available surface area on which to conduct reconnaissance and ply attacks is essentially doubled.

Social engineering’s role in the RDP exploit

According to Okta’s press release, an attacker “obtained remote access using RDP” to a computer owned by Sitel. Based on threat actor emulation conducted by our team and the typical LAPSUS$ approach, it is clear that social engineering played a key role in this attack, which was likely via a targeted spear phishing campaign, outright bribery, or similar delivery mechanism, which would have provided attackers not only with device location information needed for the RDP exploit, but also important information about the device and other security controls. 

Remember that social engineers are hackers that focus on tricking people so they can defeat technical controls. Tricking people is easy when you know something personal about them—in fact, our research indicates attackers are at least 200x more likely to trick their targets when the attack leverages personal information. 

The amount of time, energy, and resources required to complete this reconnaissance was significant, but it was made easier by the two key documents found during our initial recon on the target. While there are other breadcrumbs that could have led us down the same path, many of those paths offered less clear value, while these two documents essentially pointed to “easy access this way.” Finding these documents quickly and easily means that hackers are likely to prioritize this attack path over others—the easier it is, the less time and resources it consumes, and the greater the return on effort. 

Key learnings for cyber defenders

Recognize you are at war. Make no mistake about it, we are in a war that is being fought in cyberspace, and unfortunately companies like Okta and Sitel are collateral damage. Just as in a hot war, one of the most successful methods for countering insurgent attacks is to “turn the map around” to see your defenses from the perspective of the enemy. This outside-in way of thinking offers critical differentiation in the security-strategy development process, where we desperately need to change the paradigm and take proactive measures to stop attacks before they happen. I wrote another short article about how to think like an attacker that might be helpful if you are new to this approach.

Be proactive and use MITRE—all of it. The prevailing method used by cyber defenders to map attacker techniques and reduce risk is called the MITRE ATT&CK framework. The design of the framework maps fourteen stages of an attack from the start (aptly called Reconnaissance) through its end (called Impact)—our team emulated attacker behaviors during the reconnaissance stage of the attack in this example. Cyber defenders are skilled at reacting to incidents mainly because legacy technologies are reactive in nature. MITRE recommends a proactive approach to remediating the reconnaissance stage to “limit or remove information” harvested by hackers. Defenders have an opportunity to be proactive and leverage new technologies that expand visibility and proactive remediation beyond the corporate firewall into the first stage of an attack. Curtailing hacker reconnaissance by removing the data hackers need to plan and launch their attack is the best practice according to MITRE. 

Get ahead of regulations. Federal regulators are also coming upstream of the attack and have signaled a shift with new SEC disclosure guidance, which requires companies to disclose cybersecurity incidents sooner. Specifically, one key aspect of the new rule touches on “…whether the [company] has remediated or is currently remediating the incident.” New technologies that emulate threat actor reconnaissance can make cyber defenders proactive protectors of an organization’s employees, contractors, and customers long before problems escalate to front page news. These new technologies allow companies to remediate risk at the reconnaissance stage of the attack—an entirely new technology advantage for cyber defenders. 

Every single attack begins with research. Removing the data that hackers need to connect their attack plans to their human targets is the first and best step for companies who want to avoid costly breaches, damaging headlines, and stock price shocks.

Think Like a Hacker to Stop Attacks Before They Strike

By Matt Polak, CEO of Picnic

Cyber threat intelligence indicates that there is a high probability of digital retaliation against Western companies and governments that have supported Ukraine or distanced from Russia. Russia has validated this intelligence and their cyberwar strategy is evident: they harvest personally identifiable information (PII) about individuals and use it to power social engineering schemes to conduct attack and compromise campaigns that cause damage, collect intelligence, and generate income.

Organizations that have cut (or iced) ties with Russia, or those supporting Ukraine, are most likely to be the direct targets of Russian cyber aggression and retaliation. There are three things you should know about how threat actors like Russia operate: 

  1. Their #1 attack vector is social engineering.
  2. Their #1 target is high-value employees.
  3. Every attack begins with reconnaissance of public data footprints (i.e., OSINT data).

Unfortunately, existing controls are not likely to stop sophisticated social engineering attacks: training doesn’t work (people can’t be trained to spot these well crafted attacks), and technical controls like mail gateways and endpoint protection can be defeated with staged operations that identify (to evade) such technical controls.

In addition to the #shieldsup activities that are ongoing, below are some simple steps companies concerned about retaliation should take immediately.

What Should You Do

  1. Embrace the attacker’s mindset
  2. Identify your targets
  3. Remediate
  4. Repeat

1. Embrace the Attacker’s Mindset

Start by approaching this problem as the attacker. Ask yourself some key questions:

  • What systems would I want to gain access to?
  • What security controls, if exploited, would lead to catastrophic damage?
  • Who has access—either to the systems themselves or to the controls?
  • Who do you think would make the best target if you were the attacker? Why?

This last question is key and leads into the next activity: identify your targets.

2. Identify Your Targets

Make a list of your people as follows:

  • Group 1: People (probably your C-Suite and Board) whose personal brands and reputations are intertwined with your company’s brand and reputation.
  • Group 2: People who work directly with and support “Group #1”
  • Group 3: People with privileged access to your “crown jewels”
  • Group 4: People who work directly with and support “Group 3”
  • Group 5: If not already considered, the people who have privileged access to your organization’s security controls
  • Group 6: People who work directly with and support “Group 5”

I recommend putting these people into a spreadsheet for simple management, since you’ll want to capture some additional information on each one.

First, for person in each group:

  1. Add their LinkedIn profile (assuming they have one) to your spreadsheet
  2. Add their work and personal (if available) emails to the spreadsheet

Create a few columns on which you can track some basic data about each person with a simple Yes or No.

For their LinkedIn profile:

  • Does the person list a specific geography where they are located?
  • Does the person list anything in their profile that would suggest they would be an attractive target? Words like “administrator” or listing technologies or processes they are responsible for are dead giveaways.
  • Does the person list any contact information on the page?

For their work and personal emails:

  • Run through whatever breach repos (sites on the public, deep, and dark web where people’s usernames, passwords, and other personal information are stored and sold) you have access to and denote the quantity (as a count) of cleartext credentials available for each person.

When you are done, your spreadsheet should look something like this, sorted by seniority:

You can use some basic approaches to analyze this kind of data that leverages your knowledge of your company and its security practices, as well as the questions you asked yourself upfront when you thought like the attacker.

For example, as seen above, you might decide that people with the most amount of breaches in their work emails are important to triage first. In this view, the EA to the CEO is most likely to be targeted, so you might increase sandboxing for their account, have a direct 1:1 security coaching session with them, and make some reasonable requests to modify personal data to neutralize oversharing in social media. At a minimum, you should make sure that none of the cleartext credentials you found are being used in your company’s infrastructure, and ideally not used in an employee’s personal life. After all, attackers want to find the easiest path in, and it’s usually smooth sailing into unmonitored personal email and interconnected social media.

If you want to apply more analysis, you could associate a score of 1 point with any “Y” and weight everything equally. Doing so would yield a target list that looks quite different and makes your RDP Admin (yikes!) to the #1 target for attack:

What’s equally valuable about this exercise is knowing who is not the most likely to attack. Maybe your gut instinct told you that your Security Tools Admin was likely your top target, but your quick analysis shows this person would be difficult to target, which would de-prioritize them in the eyes of an attacker.

Organizations have limited human analyst resources capable of solving problems that computers can’t solve, so knowing where to invest valuable staff resources is critically important in our current elevated threat environment.

There are many approaches that can yield valuable insight into how to secure your organization based on the view of the attacker. Remember, the way the attacker prioritizes their targets is based on reconnaissance of public data. Seniority is a useful metric, but it’s only one consideration. Oftentimes it is those people who are accessible rather than valuable who are the first line of attack for hackers who seek to leverage credential escalation and lateral movement. For example, the executive assistant to the CTO could be easily overlooked by an internal security organization, but someone in this role likely has shared access to certain systems that are sensitive, and therefore would likely be a prime target for an attacker.

3. Remediate

Now that you know who is most likely at risk, we recommend a quick scrub of OSINT data to make your team harder to target. In order of priority:

  1. Passwords. Confirm that all cleartext credentials are not in use and ideally banned from your systems and also ask employees to confirm they are not using these credentials either.
  2. LinkedIn. Go back to the list of words or phrases that powered your evaluation of LinkedIn. Send a quick email to your team asking them to change or remove these words with an explanation as to why. (see “resources” below for a sample communication)
  3. Data Brokers. Find and remove data brokers, which are an easy source for threat actors looking for PII on your employees. To do this, run a series of Google searches for the people in your list such as: “Full Name” + “work email”; “Full Name” + “personal email”; and “Full Name” + “home address”. Results will commonly include data brokers such as Whitepages, Spokeo, MyLife, and ZoomInfo. These data broker sites support removal requests, though the process can take time and is not uniform. If you want help with this, please contact me or comment.

4. Repeat

This type of exercise should be run continuously in good times and in bad. Digital footprints and employee populations are in constant flux, and so are attacker motives and methods. Building capacity for this type of capability will help build a security culture and create good operational security practices that should be the backbone of any security strategy.

Remember, hackers scout your organization to find an easy way in so they can compromise your people, your company, and your brand (in that order).

Picnic solves this problem at scale, so if you want to learn more about how to come upstream of the attack to stop hackers, please get in touch with us to schedule a demo.

Resources

After reducing the attack surface of the human, the next step would be to consider something like what has been proposed by Krebs Stamos Group, who provided helpful advice for those exiting the Russian market (or icing) ties with Russian connected organizations.

Sample Communication

[EMPLOYEE],

In light of [COMPANY’s] position in the global market and recent actions with respect to Russia, we conducted a threat assessment to identify ways to protect our highly valued employees like you from hackers who might retaliate against [COMPANY].

Hackers are targeting the personal lives of employees to gain access to company systems, so it’s important we take this threat seriously for both the company and you.

Based on the threat assessment we conducted, we are asking employees with the following information in their LinkedIn profiles to change or remove it.

Please remove the following references:

  • System Name 1
  • System Name 2
  • System Name 3

We believe that by removing these references it will make you less likely to be the target of malicious activity, which will make you safer online both at work and home.

This small change will make a big difference for you and your colleagues.

Thank you for your help,
[NAME]